

The Chemistry of Acylals. Part III. Cyanohydrin Esters from Acylals with Cyanide Reagents

Marcel Sandberg and Leiv K. Sydnes*

Department of Chemistry, University of Bergen, Allégt. 41, N-5007 Bergen, Norway

Leiv.sydnes@kj.uib.no

EXPERIMENTAL

General: ^1H and ^{13}C NMR spectra were obtained on a Bruker AM 200 spectrometer at 200 and 50 MHz, respectively, using CDCl_3 as the solvent and tetramethylsilane (TMS) as an internal standard. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet and q = quartet. IR spectra were recorded on a Perkin-Elmer model 1310 spectrometer. Flash chromatography was performed on Silica gel 60 (230-400 mesh) from Merck using either hexane : ethyl acetate 95 : 5 or hexane : ethyl acetate 90 : 10 as eluent. Thin layer chromatography (TLC) was carried out on Silica 60 F_{254} from Merck. Analytical gas chromatography (GC) was performed on a Hewlett Packard 5720 A gas chromatograph equipped with a 4-m packed column (15% SP-2100 on Supelcoport); FID detection was applied and a HP 3380 A integrator was connected to the instrument. The sonication experiments were performed in a Bandelin Sonorex Super RK 255 H laboratory cleaner with a 320 W effect. THF was distilled from sodium/benzophenone. Mass spectra were obtained on a VG Fisons 7070E Micromass spectrometer operated in the EI mode at 70 eV.

Synthesis of acylals (2). Aldehydes (**1**) were converted to acylals on a 18-450 mmol scale following literature procedures.^{1,2} The physical and spectroscopic properties of most acylals have been reported previously¹ whereas those of the remaining acylals are as follows.

Ethylidene diacetate (2f). Acetic anhydride (69.5 g, 0.68 mol) and ethanal (20.0 g, 0.45 mol) gave **2f** (43.3 g, 65%) as a colourless liquid, b.p. 68-70 °C/10 mmHg (lit.³ 54-56 °C/10 mmHg); ν_{max} (neat) 2995, 2920, 1745, 1440, 1370, 1240, 1100, 1005, 945, 655 cm^{-1} ; δ_{H} 7.47 (1 H, t, J 5.5 Hz), 2.70 (6 H, s), 2.10 (3 H, d, J 5.5 Hz); δ_{C} 168.9, 88.5, 20.9, 19.5.

Ethylidene dipropanoate (2g). Propanoic anhydride (44.0 g, 0.34 mol) and ethanal (10.0 g, 0.23 mol) gave **2g** (31.6 g, 80%) as a colourless liquid, b.p. 116-117 °C/22 mmHg (lit.⁴ 87-89 °C/10 mmHg); ν_{max} (neat) 2960, 2920, 1735, 1440, 1360, 1190, 1070, 915, 865 cm^{-1} ; δ_{H} 6.88 (1 H, q, J 6.1 Hz), 2.35 (4 H, q, J 7.5 Hz), 1.47 (3 H, d, J 6.1 Hz), 1.14 (6 H, t, J 7.5 Hz); δ_{C} 172.1, 88.1, 27.1, 19.3, 8.5.

2-Butenylidene diacetate (2i). Acetic anhydride (43.2 g, 0.42 mol) and crotonaldehyde (20.0 g, 0.28 mol) gave **2i** (39.8 g, 82%) as a colourless liquid, b.p. 96-98 °C/11 mmHg; ν_{max} (neat) 2920, 1740, 1430, 1360, 1230, 1200, 950 cm^{-1} ; δ_{H} 7.08 (1 H, m), 6.10-5.99 (1 H, m), 5.62-5.58 (1 H, m), 2.08 (6 H, s), 1.79-

1.74 (3 H, m); δ_{C} 168.4, 132.9, 124.4, 89.5, 20.6, 17.3; m/z (EI) 131 (2), 130 (27), 129 (13), 114 (2), 113 (27), 112 (3), 103 (4), 87 (6), 71 (100), 70 (26), 69 (77), 61 (13); HRMS (EI): $\text{M}^+ \text{-AcO}^-$, found 113.0572. $\text{C}_6\text{H}_9\text{O}_2$ requires 113.0602.

Cyclohexylidene diacetate (2j). Acetic anhydride (10.8 g, 0.106 mol) and cyclohexanecarbaldehyde (8.00 g, 71 mmol) gave **2j** (13.7 g, 60%) as a colourless liquid, b.p. 146-148 °C/13 mmHg (lit.⁵ 131-133 °C/10 mmHg); ν_{max} (neat) 2920, 2840, 1750, 1440, 1365, 1235, 1200, 1110 cm^{-1} ; δ_{H} 6.62 (1 H, d, J 5.2 Hz), 2.07 (6 H, s), 1.81-1.65 (6 H, m), 1.27-1.10 (5 H, m); δ_{C} 168.7, 92.1, 40.6, 26.5, 25.8, 25.2, 20.4.

Butylidene dicrotonate (2k). Crotonic anhydride (6.94 g, 45 mmol) and butanal (2.16 g, 30 mmol) gave **2k** (5.96 g, 88%) as a colourless liquid, b.p. 99-102 °C/1 mmHg; ν_{max} (neat) 2950, 1725, 1640, 1430, 1245, 1155, 1090, 980 cm^{-1} ; δ_{H} 7.03-6.85 (2 H, m), 6.76 (1 H, t, J 5.5 Hz), 5.80-5.71 (2 H, m), 1.92-1.87 (6 H, m), 1.85-1.68 (2 H, m), 1.42 (2 H, sextet, J 7.5 Hz), 0.97 (3 H, t, J 7.5 Hz); δ_{C} 162.7, 144.5, 122.3, 89.8, 35.3, 17.7, 16.7, 13.7; m/z (EI) 155 (2), 142 (2), 141 (8), 128 (2), 127 (2), 126 (24), 95 (2), 71 (62), 70 (27), 69 (100); HRMS (EI): $\text{M}^+ \text{-CH}_3\text{CH=CHCOO}^-$, found 141.0890. $\text{C}_8\text{H}_{13}\text{O}_2$ requires 141.0915.

Hexylidene dihexanoate (2l). Hexanoic anhydride (48.1 g, 0.22 mol) and hexanal (15.0 g, 0.15 mol) gave **2l** (35.4 g, 75%) as a pale yellow liquid, b.p. 137-138 °C/0.7 mmHg. ν_{max} (neat) 2940, 2910, 2840, 1745, 1450, 1370, 1235, 1085, 980 cm^{-1} ; δ_{H} 6.81 (1 H, t, J 5.6 Hz), 2.31 (4 H, t, J 7.2 Hz), 1.77-1.66 (2 H, m), 1.62-1.55 (4 H, m), 1.37-1.24 (14 H, m), 0.89 (9 H, m); δ_{C} 171.8, 90.4, 34.1, 33.3, 31.4, 31.3, 24.5, 23.2, 22.5, 22.4, 13.9; m/z (EI) 200 (1), 199 (7), 158 (1), 100 (7), 99 (100), 98 (3), 87 (6), 73 (16), 71 (18); HRMS (EI): $\text{M}^+ \text{-CH}_3(\text{CH}_2)_4\text{COO}^-$, found 199.1741. $\text{C}_{12}\text{H}_{23}\text{O}_2$ requires 199.1698.

Benzylidene dicrotonate (2n). Crotanoic anhydride (20.0 g, 0.13 mol) and benzaldehyde (13.8 g, 0.13 mol) gave **2n** (28.4 g, 84%) as a white crystalline solid, m.p. 45-47 °C; ν_{max} (CCl_4) 3030, 2985, 1735, 1650, 1440, 1290, 1250, 1095, 1000, 970 cm^{-1} ; δ_{H} 7.68 (1 H, s), 7.49-7.44 (2 H, m), 7.34-7.29 (3 H, m), 7.04-6.93 (2 H, m), 5.92-5.74 (2 H, m), 1.97-1.75 (6 H, m); δ_{C} 162.5, 145.0, 136.2, 128.9, 128.0, 126.5, 122.1, 89.1, 17.8; m/z (EI) 192 (2), 191 (5), 175 (3), 174 (2), 138 (3), 106 (6), 105 (40), 77 (10), 70 (5), 69 (100); HRMS (EI): $\text{M}^+ \text{-CH}_3\text{CH=CHCOO}^-$, found 175.0746. $\text{C}_{11}\text{H}_{11}\text{O}_2$ requires 175.0759.

Benzylidene dihexanoate (2o). Benzaldehyde (10.6 g, 0.10 mol) and hexanoic anhydride (32.1 g, 0.15 mol) gave **2o** (24.1 g, 75%) as a pale yellow liquid, b.p. 153-156 °C/2 mmHg; ν_{max} (neat) 3030, 2950, 2920, 2880, 1755, 1450, 1205, 1160, 700 cm^{-1} ; δ_{H} 7.72 (1 H, s), 7.47-7.54 (2 H, m), 7.35-7.42 (3 H, m), 2.37 (4 H, t, J 7.7 Hz), 1.57-1.71 (4 H, m), 1.22-1.36 (8 H, m), 0.88 (6 H, t, J 6.4 Hz); δ_{C} 171.4, 135.6, 129.4, 128.3, 126.5, 89.3, 33.9, 30.9, 24.1, 22.1, 13.7.

Reactions of acylals with potassium cyanide in DMSO. In a typical experiment a dry, nitrogen-filled, 50-mL, round-bottomed flask was charged with an aliphatic acylal (4.94 mmol), and a mixture of KCN (0.33 g, 5.04 mmol, 1.2 eqv.) and dry DMSO (10 mL) was added. The reaction was completed by stirring overnight, at room temperature to 80 °C for the aromatic acylals and at room temperature for the aliphatic acylals. Work-up was carried out by addition of H_2O (50 mL) and extraction with Et_2O (3 x 30 mL). The combined ethereal extracts were washed with H_2O (5 x 50 mL). Drying (MgSO_4), filtration, and concentration under vacuum afforded spectroscopically pure products as pale yellow liquids.

Two reactions deviated slightly from the general procedure, *viz.* those of **2f** and **2g**, which required 1.25 eqv. of KCN and a reaction time of 48 hours to give satisfactory results.

Physical and spectroscopic properties of the cyanohydrin esters formed and isolated are as follows.

1-Cyanoethyl acetate (3f). Ethylidene diacetate (1.00 g, 6.84 mmol) and potassium cyanide (0.49 g, 7.52 mmol) gave **3f**⁶ (0.68 g, 87%) as a colourless liquid when isolated by flash chromatography; ν_{\max} (neat) 2980, 1745, 1360, 1210, 1090 cm^{-1} ; δ_{H} 5.37 (1 H, q, *J* 6.9 Hz), 2.13 (3 H, s), 1.63 (3 H, d, *J* 6.9 Hz); δ_{C} 169.0, 117.3, 57.0, 20.1, 18.4.

1-Cyanoethyl propionate (3g). Ethylidene dipropanoate (1.00 g, 5.74 mmol) and potassium cyanide (0.41 g, 6.31 mmol) gave **3g** (0.60 g, 82%) as a colourless liquid when isolated by flash chromatography; ν_{\max} (neat) 2980, 1750, 1450, 1160, 1095 cm^{-1} ; δ_{H} 5.40 (1 H, q, *J* 6.9 Hz), 2.41 (2 H, q, *J* 7.5 Hz), 1.64 (3 H, d, *J* 8.3 Hz), 1.18 (3 H, t, *J* 7.5 Hz); δ_{C} 172.6, 117.7, 57.2, 27.1, 18.8, 8.7.

1-Cyanoethyl acetate (3h). Hexylidene diacetate (1.00 g, 4.95 mmol) and potassium cyanide (0.39 g, 5.93 mmol) gave **3h** (0.76 g, 91%) as a pale yellow liquid when isolated by flash chromatography; ν_{\max} (neat) 2960, 2940, 2860, 1750, 1460, 1370, 1220 cm^{-1} ; δ_{H} 5.31 (1 H, t, *J* 6.7 Hz), 2.13 (3 H, s), 1.84-1.95 (2 H, m), 1.43-1.54 (2 H, m), 1.21-1.40 (4 H, m), 0.91 (3 H, t, *J* 5.6 Hz); δ_{C} 168.8, 116.6, 60.8, 31.9, 30.6, 23.9, 22.0, 20.0, 13.5.

1-Cyano-2-butenyl acetate (3i). 2-Butenylidene diacetate (1.00 g, 5.80 mmol) and potassium cyanide (0.45 g, 6.97 mmol) gave **3i**³ (0.64 g, 80%) as a yellow liquid isolated by flash chromatography; ν_{\max} (neat) 2920, 1740, 1655, 1430, 1360, 1205, 1010 cm^{-1} ; δ_{H} 5.97-6.08 (1 H, m), 5.62-5.66 (1 H, m), 5.37-5.49 (1 H, m), 2.07 (3 H, s), 1.64-1.68 (3 H, m); δ_{C} 168.8, 135.4, 121.1, 115.5, 61.2, 20.2, 17.4.

1-Cyanocyclohexyl acetate (3j). Cyclohexylidene diacetate (1.00 g, 4.14 mmol) and potassium cyanide (0.31 g, 4.75 mmol) gave **3j**⁷ (0.70 g, 92%) as a colorless liquid when eluted with hexane : ethyl acetate 95 : 5; ν_{\max} (neat) 2920, 2845, 1750, 1445, 1365, 1220, 1030 cm^{-1} . δ_{H} 5.17 (1 H, d, *J* 5.9 Hz), 2.14 (3 H, s), 1.69-1.93 (6 H, m), 1.10-1.33 (5 H, m); δ_{C} 169.0, 115.9, 65.3, 39.7, 27.8, 27.6, 25.5, 25.1, 25.0, 20.1.

In addition to **3l** 20 mg (4%) of cyclohexanecarbaldehyde was isolated.

1-Cyanobutyl crotonate (3k). Butylidene dicrotonate (1.00 g, 4.42 mmol) and potassium cyanide (0.42 g, 6.45 mmol) gave **3k** (0.32 g, 43%) as a pale yellow liquid when isolated by flash chromatography; ν_{\max} (neat) 2960, 2865, 1725, 1650, 1435, 895, 750 cm^{-1} ; δ_{H} 7.04-7.19 (1 H, m), 5.82-5.92 (1 H, m), 5.40 (1 H, t, *J* 6.7 Hz), 1.83-1.97 (5 H, m), 1.46-1.64 (2 H, m), 1.00 (3 H, t, *J* 7.3 Hz); δ_{C} 164.0, 147.4, 120.5, 116.8, 60.3, 34.0, 17.8, 17.6, 13.0.

1-Cyanoethyl hexanoate (3l). Hexylidene diacetate (1.00 g, 3.18 mmol) and potassium cyanide (0.25 g, 3.82 mmol) gave **3l** (0.65 g, 91%) as a pale yellow liquid when isolated by flash chromatography; ν_{\max} (neat) 2940, 2910, 1740, 1450, 1150, 1100 cm^{-1} ; δ_{H} 5.33 (1 H, t, *J* 6.7 Hz), 2.38 (2 H, t, *J* 7.6 Hz), 1.73-1.95 (2 H, m), 1.54-1.69 (2 H, m), 1.42-1.50 (2 H, m), 1.28-1.35 (8 H, m), 0.87-0.94 (6 H, m); δ_{C} 171.9, 116.9, 60.7, 35.1, 33.4, 32.0, 30.9, 30.7, 24.1, 24.0, 22.1, 22.0, 13.7.

1-Cyanododecyl acetate (3m). Dodecylidene diacetate (1.00 g, 3.49 mmol) and potassium cyanide (0.27 g, 4.19 mmol) gave **3m** (0.87 g, 97%) as a pale yellow liquid when isolated by flash chromatography; ν_{\max} (neat) 2920, 2850, 1750, 1460, 1370, 1240, 1030 cm^{-1} ; δ_{H} 5.31 (1 H, t, *J* 6.7 Hz), 2.14 (3 H, s), 1.81-1.95 (2 H, m), 1.42-1.53 (2 H, m), 1.17-1.40 (16 H, m), 0.88 (3 H, t, *J* 6.8 Hz); δ_{C} 169.1, 116.8, 61.0, 35.1, 32.0, 31.7, 29.3, 29.2, 29.1, 29.07, 28.6, 24.3, 22.5, 20.2, 13.9.

Treatment of 2 with trimethylsilyl cyanide in the presence of titanium(IV) chloride. The acylals were reacted on a 3.5 - 5.0 mmol scale. In a typical experiment a 50-mL, nitrogen-filled round-bottom flask was charged with acylal in CH_2Cl_2 (5 mL) and trimethylsilyl cyanide (TMSCN) (1.10 eqv). The reaction mixture was cooled to -78 °C with a dry ice-acetone bath, and titanium(IV) chloride (1.10 eqv.) was added with stirring. The mixture was allowed to reach room temperature and was stirred at this temperature for 2 hrs. H_2O (50 mL) was added, and the products were extracted with Et_2O (3 x 30 mL). The combined extracts were washed with H_2O (2 x 50 mL), dried (MgSO_4), filtered and concentrated under vacuum. The crude products were subjected to further purification by flash chromatography if necessary.

The results of the reactions with a number of acylals are summarized in Table 4.

Physical and spectroscopic properties of the cyanohydrin esters formed and isolated, but not reported above are as follows.

Cyano(phenyl)methyl acetate (3a). Benzylidene diacetate (0.50 g, 2.40 mmol), TMSCN (0.26 g, 2.64 mmol) and TiCl_4 (0.50 g, 2.64 mmol) gave **3a**⁷ (0.39 g, 93%) as a colorless liquid; ν_{max} (neat) 1745, 1360, 1205, 750, 690 cm^{-1} ; δ_{H} 7.54-7.41 (5 H, m), 6.40 (1 H, s), 2.13 (3 H, s); δ_{C} 168.6, 131.5, 130.1, 128.9, 127.6, 115.9, 62.6, 20.1.

Cyano(4-methylphenyl)methyl acetate (3b). 4-Methylbenzylidene diacetate (0.50 g, 2.25 mmol), TMSCN (0.25 g, 2.47 mmol) and TiCl_4 (0.43 g, 2.47 mmol) gave **3b**⁸ (0.32 g, 75%) as pale yellow crystals, m.p. 46-47 °C; ν_{max} (neat) 1745, 1365, 1210, 1010, 805 cm^{-1} ; δ_{H} 7.42-7.38 (2 H, m), 7.26-7.21 (2 H, m), 6.36 (1 H, s), 2.37 (3 H, s), 2.12 (3 H, s); δ_{C} 168.7, 140.4, 129.6, 128.6, 127.6, 116.0, 62.5, 21.0, 20.2.

In addition chloro(4-methylphenyl)acetonitrile (80 mg, 21%) was obtained as pale, yellow crystals, m.p. 33-34 °C; ν_{max} (CCl_4) 1530, 1240, 1200, 1190, 995, 965 cm^{-1} ; δ_{H} 7.40-7.44 (2 H, m), 7.22-7.26 (2 H, m), 5.52 (1 H, s), 2.38 (3 H, s); δ_{C} 140.7, 129.9, 127.4, 116.0, 43.9, 21.1; m/z (EI) 167 (5 M^+), 165 (15 M^+), 150 (2), 147 (2), 145 (2), 132 (3), 131 (14), 130 (10), 103 (18), 91 (9), 77(10); HRMS (EI): M^+ , found 167.0291. $\text{C}_9\text{H}_8^{37}\text{ClN}$ requires 167.0315.

Cyano(4-methoxyphenyl)methyl acetate (3c). 4-Methoxybenzylidene diacetate (1.00 g, 4.20 mmol), TMSCN (0.46 g, 4.62 mmol) and TiCl_4 (5 drops) gave **3c**⁹ (0.75 g, 87%) as a pale yellow liquid; ν_{max} (neat) 1730, 1490, 1010, 940, 810 cm^{-1} ; δ_{H} 7.47-7.43 (2 H, m), 6.96-6.93 (2 H, m), 6.35 (1 H, s), 3.83 (3 H, s), 2.14 (3 H, s); δ_{C} 167.7, 160.8, 129.4, 124.1, 115.5, 114.2, 62.1, 54.8, 20.0.

Cyano(4-chlorophenyl)methyl acetate (3d). 4-Chlorobenzylidene diacetate (0.50 g, 2.06 mmol), TMSCN (0.23 g, 2.32 mmol) and TiCl_4 (0.39 g, 2.06 mmol) gave **3d**⁹ (0.23 g, 53%) as a colourless oil; ν_{max} (neat) 3060, 2910, 1735, 1475, 1210 cm^{-1} ; δ_{H} 7.47-7.37 (4 H, m), 6.39 (1 H, s), 2.16 (3 H, s); δ_{C} 168.5, 136.2, 131.6, 129.2, 129.0, 115.6, 61.9, 20.1.

In addition chloro(4-chlorophenyl)acetonitrile (160 mg, 42%) was obtained as a colorless liquid; ν_{max} (neat) 1535, 1220, 1190, 990, 970, 680 cm^{-1} ; δ_{H} 7.34-7.51 (4 H, m), 5.56 (1 H, s); δ_{C} 136.4, 131.1, 130.1, 128.2, 115.5, 43.2. The compound decomposed before the mass spectrum was run.

Cyano(4-nitrophenyl)methyl acetate (3e). 4-Nitrobenzylidene diacetate (0.50 g, 1.97 mmol), TMSCN (0.22 g, 2.17 mmol) and TiCl_4 (0.41 g, 2.17 mmol) gave **3e** (0.42 g, 96%) as light yellow crystals, m.p. 108-109 °C (lit.¹⁰ 110-112 °C); ν_{max} (CCl_4) 1750, 1525, 1340, 1250, 1200, 1000 cm^{-1} ; δ_{H} 8.20-8.30 (2 H, m), 7.60-7.75 (2 H, m), 6.47 (1 H, s), 2.17 (3 H, s); δ_{C} 168.5, 148.7, 137.9, 128.5, 124.1, 115.0, 61.5, 20.1.

Cyano(phenyl)methyl crotonate (3n). Benzylidene dicrotonate (0.51 g, 1.92 mmol), TMSCN (0.21 g, 2.11 mmol) and TiCl_4 (0.40 g, 2.11 mmol) gave **3n** (0.36 g, 96%) as a colourless oil; ν_{max} (neat) 3030, 2940, 1710, 1635, 1420, 1150, 1090, 730, 690 cm^{-1} ; δ_{H} 7.03-7.14 (5 H, m), 6.47 (1 H, s), 5.82-5.90 (1 H, m), 1.84-1.88 (3 H, m); δ_{C} 163.7, 148.0, 131.6, 129.9, 128.8, 127.4, 120.2, 116.0, 62.3, 17.8.

Cyano(phenyl)methyl hexanoate (3o). Benzylidene dihexanoate (0.50 g, 1.56 mmol), TMSCN (0.17 g, 1.71 mmol) and TiCl_4 (0.33 g, 1.71 mmol) gave **3o** (0.33 g, 91%) as a colorless oil when isolated by flash chromatography (hexane : ethyl acetate 90 : 10); ν_{max} (neat) 2940, 2920, 2850, 1745, 1450, 1145, 755, 695 cm^{-1} . δ_{H} 7.41-7.55 (5 H, m), 6.43 (1 H, s), 2.40 (2 H, t, J 8.1 Hz), 1.58-1.69 (2 H, m), 1.25-1.36 (4 H, m), 0.88 (3 H, t, J 6.5 Hz); δ_{C} 171.5, 131.7, 130.1, 129.0, 127.6, 116.0, 62.4, 33.4, 30.8, 24.1, 22.0, 13.6.

REFERENCES AND NOTES

1. Sydnes, L. K.; Sandberg, M. *Tetrahedron* **1997**, 53, 12679.
2. Man, E. H., Sanderson, J. J., Hauser, C. H. *J. Am. Chem. Soc.* **1950**, 72, 847.
3. McIntosh, J. M. *Can. J. Chem.* **1977**, 55, 4200.
4. Au, A. T. *Synth. Commun.* **1984**, 14, 743.
5. Friedrich, K. and Wallenfels, K. in Z. Rappoport *The Chemistry of the Cyano Group*. Wiley, New York (1970), pp. 77-86.
6. Hoffmann, H. M. R., Ismail, Z. M., Hollweg, R., Zein, A. R. *Bull. Chem. Soc. Jpn.* **1990**, 63, 1807.
7. Okimoto, M., Chiba, T. *Synthesis* **1996**, 1188.
8. Baciocchi, E., Mattioli, M., Romano, R. *J. Org. Chem.* **1991**, 56, 7154.
9. Yoneda, R., Santo, K., Harusawa, S., Kurihara, T. *Synthesis* **1986**, 1054.
10. Varella, E. A., Varvoglou, A. *Synth. Commun.* **1991**, 21, 531.